【学术报告】From Frank-Kasper, Quasicrystals and Biological Membrane Mimics to In Vivo Reprograming the Living Factory by Targeting Delivery of mRNA with One-Component Amphiphilic Janus-Dendrimers
日期:2023-11-13 阅读:2122

题目:From Frank-Kasper, Quasicrystals and Biological Membrane Mimics to In Vivo Reprograming the Living Factory by Targeting Delivery of mRNA with One-Component Amphiphilic Janus-Dendrimers

主讲人:Virgil Percec

时间:2023年11月13日(周一)9:30-11:30

地点:霞光楼220报告厅

邀请人:张绍东 副教授


报告人简介

Virgil Percec, born and educated in Romania, earned a BS in Organic and Macromolecular Chemistry at the Polytechnic University in Iasi in 1969 and completed his PhD in 1976 at the Institute of Macromolecular Chemistry in Iasi under C. I. Simionescu's guidance. In 1981, he defected from Romania and embarked on a significant international career. After brief postdoctoral stays in Germany and the US, he joined Case Western Reserve University in Cleveland, US, as an Assistant Professor in the Department of Macromolecular Science in March 1982. Over the years, he made significant strides, becoming an Associate Professor in 1984 and a full Professor in 1986. He was honored with the Leonard Case Jr. Chair in 1993. Subsequently, he moved to the University of Pennsylvania in Philadelphia in 1999 as the P. Roy Vagelos Chair and Professor of Chemistry.Percec's illustrious career is punctuated with numerous awards and honors. Notable accolades include the Humboldt Award for Senior US Scientists (1997, 2011), NSF Research Awards for Creativity in Research (1990, 1995, 2000, 2016), the ACS Award in Polymer Chemistry (2004), the Staudinger Medal from ETH (2005), and several honorary doctorates and fellowships in prestigious scientific societies.He has had a significant editorial role, having served as an editor for various scientific journals and book series. Currently, he serves as Editor of Advances in Polymer Science and holds positions on numerous editorial and advisory boards for international journals and scientific institutions.Percec's research encompasses a broad spectrum at the intersection of organic, supramolecular, macromolecular chemistries, liquid crystals, nanoscience, and biology. His remarkable contributions include over 760 refereed publications, 80 patents, 19 edited books, and more than 1200 endowed, invited, and plenary lectures.His influence is evident in his high citation count, with an h-index of 101 in Web of Science and 110 in Google Scholar. Notably, he has been recognized by Thomson Reuters and Clarivate Analytics as one of the "World’s Most Influential Scientific Minds" and listed in the "Global Highly Cited Researchers."


报告摘要

Homochiral helical self-organizations are known at the macroscopic level in nature, art, architecture and science for thousands of years [1a,b]. However, molecular helicity was discovered in proteins and DNA [2] only in the early 1950th and in molecular, macromolecular and supramolecular complex synthetic-systems soon after [1c,d,e,f]. Both biological and synthetic helical systems were elucidated with X-ray diffraction methods. However, our ability to program functions at the supramolecular level based on helical chirality is less advanced than the same process at the macroscopic level during Archimedes and Leonardo da Vinci times. The principles “discover-elucidate mechanism-predict programmed primary structure” elaborated in our laboratory for helical self-organizations were aided by structural and retrostructural analysis transplanted from molecular biology to supramolecular chemistry and complemented by synthetic methodologies developed also in our laboratory for accelerated modular-orthogonal synthesis of programmed structures including Ni-catalyzed cross-coupling, mixed-ligand, thio-bromo click, SET-organic and polymerization reactions. The function of biological membranes and living cells responsible for the living factory is less elucidated since their dynamic structure cannot be accessed by diffraction methods. Therefore, even the origins and the rational of the homochirality of biological membranes continues to be debated [3]. Inspiration from amphiphilic Janus dendrimers [4a] and Janus glycodendrimers [4b] discovered in our laboratory allowed to transit from the commercial viral and synthetic vectors, the most common being the four-component lipid nanoparticles, for delivery of mRNA to the one-component ionizable multifunctional sequence-defined amphiphilic Janus dendrimers (IAJDs) delivery vector [5]. The current status of the molecular design principles providing the least expensive and the simplest access to targeted delivery of mRNA with programmed IAJDs in order to reprogram the living factory will be discussed and compared with 4-component systems. Targeted delivery of mRNA to all organs is expected to change the field of nanomedicine at the most fundamental level by providing avenues to vaccines and therapeutics for currently untreatable diseases.
References
1. (a) Percec, V.; Xiao, Q.  Bull. Chem. Soc. Jpn. 2021, 94, 900-928. (b) Percec, V.; Adamson, J.; Gianti, E. Supramolecular Nanotechnology, Wiley-VCH, 2023, Azzaroni, O.; Conda-Sheridan, M. Eds. Vol.1, p. 1-123. (c) Percec, V. Lab.  Science 1997, 278, 449-452. (d) Nature 1998, 391,161-164. (e) Nature 2002, 419, 384-387. (f) Nature 2004, 430, 764-768.  
2. (a) Pauling, L.; Corey, J. Am. Chem. Soc. 1950, 72, 5349-5349; (b) Watson, J. D.; Crick, F.H.C. Nature 1953, 171, 737-738; (c) Percec, V.; Xiao, Q. CHEM 2021, 7, 529-536; (d) Percec, V. CHEM 2023, 9, 2041-2047.
3.  Percec, V. Lab. J. Am. Chem. Soc. 2023, 145, 4311-4323.
4. (a) Percec, V. Lab. Science, 2010, 328, 1009-1014; (b) Percec, V. Lab. J. Am. Chem. Soc. 2013, 135, 9055-9077.
5. (a) Percec, V. and Weissman D. Labs. J. Am. Chem. Soc. 2021, 143, 12315-12325; (b) J. Am. Chem. Soc. 2021, 143, 18803-12325; (c) J. Am. Chem. Soc. 2022, 144, 4746-4753; (d) Pharmaceutics 2023, 15, 1572; (e) J. Am. Chem. Soc. 2023, 145,18760-18766 .


地址:上海市东川路800号 200240
电话:021-54742893
E-mail:sjtuscce@sjtu.edu.cn

官方微信平台

版权所有 Copyright 2020 沪交ICP备2010917 太阳成集团tyc7111cc(中国)股份有限公司